Modification of the RpoS network with a synthetic small RNA

نویسندگان

  • Ye Jin
  • Jianting Wu
  • Yannan Li
  • Zhiming Cai
  • Jian-Dong Huang
چکیده

Translation of the sigma factor RpoS is activated by DsrA, RprA and ArcA, three small non-coding sRNAs (sRNA) that expose the ribosome-binding site (RBS) by opening up an inhibitory loop. In the RpoS network, no sRNAs have been found to pair with the RBS, a most common sRNA target site in bacteria. Here, we generate Ribo-0, an artificial sRNA, which represses rpoS translation by pairing with the RBS. Ribo-0 bypasses the RNA chaperon Hfq but requires the RBS to be loosely blocked. Ribo-0 interacts with DsrA and reshapes the RpoS network. Specifically, in the intact RpoS network, DsrA activates rpoS translation by freeing up the RBS. In the modified RpoS network where Ribo-0 is introduced, the DsrA-caused RBS exposure facilitates Ribo-0 binding, thereby strengthening Ribo-0 inhibition. In other words, Ribo-0 changes DsrA from an activator to an accomplice for repressing rpoS translation. This work presents an artificial mechanism of rpoS regulation, reveals mutual effects of native and synthetic players and demonstrates genetic context-dependency of their functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In silico Analysis and Molecular Modeling of RNA Polymerase, Sigma S (RpoS) Protein in Pseudomonas aeruginosa PAO1

Background: Sigma factors are proteins that regulate transcription in bacteria. Sigma factors can be activated in response to different environmental conditions. The rpoS (RNA polymerase, sigma S) gene encodes sigma-38 (σ38, or RpoS), a 37.8 kDa protein in Pseudomonas aeruginosa (P. aeruginosa) strains. RpoS is a central regulator of the general stress response and operates in both retroa...

متن کامل

TrmL and TusA Are Necessary for rpoS and MiaA Is Required for hfq Expression in Escherichia coli

Previous work demonstrated that efficient RNA Polymerase sigma S-subunit (RpoS) translation requires the N6-isopentenyladenosine i6A37 transfer RNA (tRNA) modification for UUX-Leu decoding. Here we investigate the effect of two additional tRNA modification systems on RpoS translation; the analysis was also extended to another High UUX-leucine codon (HULC) protein, Host Factor for phage Qβ (Hfq)...

متن کامل

MiR-96 induced non-small-cell lung cancer progression through competing endogenous RNA network and affecting EGFR signaling pathway

Objective(s): Non-small cell lung cancer (NSCLC) has become a serious global health problem in the 21st century, and tumor proliferation and metastasis are the leading causes of death in patients  with lung cancer. The present study aimed to verify the function of miR-96 and miR-96 in relation to competing with endogenous RNA regulatory network in NSCLC progression inc...

متن کامل

RpoS Regulates Essential Virulence Factors Remaining to Be Identified in Borrelia burgdorferi

BACKGROUND Since the RpoN-RpoS regulatory network was revealed in the Lyme disease spirochete Borrelia burgdorferi a decade ago, both upstream and downstream of the pathway have been intensively investigated. While significant progress has been made into understanding of how the network is regulated, most notably, discovering a relationship of the network with Rrp2 and BosR, only three crucial ...

متن کامل

Translational activation of rpoS mRNA by the non-coding RNA DsrA and Hfq does not require ribosome binding

At low temperature, translational activation of rpoS mRNA, encoding the stationary phase sigma-factor, sigma(S), involves the small regulatory RNA (sRNA) DsrA and the RNA chaperone Hfq. The Hfq-mediated DsrA-rpoS interaction relieves an intramolecular secondary structure that impedes ribosome access to the rpoS ribosome binding site. In addition, DsrA/rpoS duplex formation creates an RNase III ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2013